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Abstract
Typical quantum gate tomography protocols struggle with a self-consistency problem: the gate
operation cannot be reconstructedwithout knowledge of the initial state and�nalmeasurement, but
such knowledge cannot be obtainedwithoutwell-characterized gates. A recently proposed technique,
known as randomized benchmarking tomography (RBT), sidesteps this self-consistency problemby
designing experiments to be insensitive to preparation andmeasurement imperfections.We
implement this proposal in a superconducting qubit system, using a number of experimental
improvements including implementing each of the elements of theClifford group in single ‘atomic’
pulses and custom control hardware to enable large overhead protocols.We show a robust
reconstruction of several single-qubit quantumgates, including a unitary outside the Clifford group.
Wedemonstrate that RBT yields physical gate reconstructions that are consistent with�delities
obtained byRB.

1. Introduction

All approaches to quantum tomography are forced tomake trade-offs given the exponentially increasing
resources necessary as the size of the system grows. There has been an aggressive effort from the community to
explore alternative approaches that return coarse-grained information in exchange for shorter run times [1–16].
All these techniques rely on some assumptions about the systembeing characterized.While quantumprocess
tomography (QPT) has been shown to suffer from systematic errors due to incorrect or unveri�ed assumptions
about preparation andmeasurement [17], randomized benchmarking (RB) is insensitive to this ignorance and
robust against imperfections in the other operations used in the protocol [8, 9]. The trade-off is that RB only
provides information about how far away an experiment is from an ideal Clifford group operation, i.e., the
average �delity. In applications where amore complete reconstruction of the operation is necessary, e.g., for
debugging purposes, RB fails to provide enough information, while the systematic errors inQPTpreclude
accurate results.

RB tomography (RBT) [18] is a recent proposal for near-complete process tomography that inherits the
robustness of standard RB and its insensitivity to state preparation andmeasurement ignorance.Most notably,
this technique also allows for the estimation of the average �delity of any applied gate relative to any unitary
operation—in some cases, this estimation can even be donewith a polynomial number of experiments, but in
general, it has the same scaling asQPT.

In this letter, we apply RBT to reconstruct single-qubit operations in a transmon superconducting qubit, and
compare these reconstructions to results obtained viaQPT. In particular, we take advantage of the RBTprotocol
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to robustly reconstruct a p 6 rotation that lies outside theClifford group.We show thatwhileQPT yields strong
non-physical features due to systematic errors, RBT reconstructions remain physical.Moreover, the�delities
estimated byRBT are compatible with�delities estimated by standard RB.

Unsurprisingly, extractingmore information requiresmore experiments. Like standardQPT and other
recentmethods for improving upon it [17, 19, 20], RBT comeswith an exponential overhead in the total number
of experiments. The additional run timemay lead to drift in parameters of the operation or in state-preparation
andmeasurement errors. This would break a fundamental assumption ofmost tomography protocols that the
parameters are�xed for all rounds of the experiment. Consequently, we describe some strategies for dealingwith
large experiment-count protocols, including the use of a custom arbitrary waveform generator that operates
with very concise sequence descriptions, and readout approaches that improve system stability.

The problemof physically valid reconstructions in tomography ismore signi�cant in certain settings. In
particular, reconstruction of nearly perfect unitary operations ismore sensitive to this issue because such
operations are extremal in the set of physically valid operations. Small errors, statistical or otherwise, can easily
push estimates outside the physical bounds [21]. To ensurewe are near this challenging limit, we endeavor to
implement single-qubit unitaries from theClifford groupwith coherence-limited control, i.e. with�delities
determined solely by instrinsic decoherence. A newmethodwe use to achieve this effectively re-introduces
frequency control to�xed-frequency qubits, creating single-pulse, or atomic, Clifford operations thatminimize
the average gate time by avoidingmulti-pulse decompositions.

2. RBT protocol

We start with a brief description of the RBTprotocol. Throughout this discussion, we denote unitary operators
in theClifford group by Ĉ ,j and the corresponding quantumoperation (superoperator) by  .j Other operations
are denoted by calligraphic fonts aswell, e.g., .The sequential composition of two operations  and  is
denoted by  ,meaning  acts�rst, followed by .This hints at the fact that operations can be represented as
matrices and operators as vectors. This representation is known as the Liouville (orHilbert–Schmidt)
representation, and throughout this discussionwewill use the Liouville representation in the Pauli basis 6. Pauli
group unitaries are denoted by X Y Z, , ,while the identity operator is denoted .

Anoperation  is called unital iff   =( ) . If  is not unital, one can still refer to its unital part,  ¢, by
ignoring the traceless components of  ( )7. This unital part of trace-preserving operations can be decomposed
into a linear combination of Clifford group operations [18, 22, 23]. In otherwords,  ¢ can be reconstructed from
estimates of overlaps

 = ( )†a tr , 1j j

where j is a Clifford operation, as long as a suf�ciently large linearly independent set of Clifford operations is
chosen. For a single-qubit, instead of the full Clifford groupwe consider
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which is a unitary two-design embedded in theClifford group [3, 24, 25].We call this group A ,4 as it is
isomorphic to the alternating group of degree four, i.e., the group of even permutations of four distinct labels.
The linear span of the operations in A4 is ten-dimensional (as is the linear span of the entire Clifford group for
single qubits), so in the experiments described here, we take the�rst 10 of these operations as our linearly
independent set. Given an estimate of the overlap vector = ¼

 { }a a a, , ,k1 standard unconstrained least-squares
inversion yields an estimate of  ¢ (see appendix).

We estimate the overlaps aj through interleaved RB sequences (IRB) [11, 12], as shown in�gure 1. That is, we
iteratively apply the sequence     = † † ,r j r j, r where r is randomly chosen from A .4 Wewill refer to a

6
This combination of choices is referred to as the Pauli–Liouville representation [18], while otherworks refer to the resultingmatrices as

Pauli transfermatrices [49].
7
More precisely, if^ is the projector that takes an operator into its traceless components and  is a trace preserving operation, then
   ¢ = +^ .
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sequence  =
i

n
r j,i as a sequence of length n, where the ri are chosen independently. In practice, it is

convenient to reduce the total sequence length by compiling the compositions of the randomly chosen rʼs and
the overlap target †,j and applying the correspondingClifford group operation instead. Choosing the overlap
set to be a group ensures that the composedClifford operations are still in the same set. Consequently, the
applied sequences will take the formof alternating randomClifford operations and the target  (see �gure 1(d)).
Aswill be discussed later, we exhaustively sample from the set of all sequences of the formof  for a given length,
so it is advantageous to sample from a subgroup like A4 instead of the full Clifford group, in order to limit the
total number of experiments.

The expectation of the �delity between the input and the output of this sequence, averaged over the random
choices of Clifford group operations, is [8, 9, 26]

= + ( )F Ap B, 3j n j
n

,
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is a decay rate, d is the dimension of the system (here d= 2), andA andB are factors

related to preparation andmeasurement errors. The decay rate pj is related to the overlap aj by

=
-

-
( )p

a

d

1

1
, 4j

j

2

so that estimates of the decay rates can be used to reconstruct .Equivalently, the aj can be related to the average
�delity between  and j [27, 28]. For small overlaps ( <a 1j ), the decay rates are negative, leading to oscillatory
decays in the length n.

Imperfections in the randomizing, or twirling [24, 25], operations can be accounted for by characterizing the
(ideally)null operation  ,0 a zero-length pulse [11, 18]. If only the�delity of 0 to the identity is estimated, the
imperfections can only be partially acounted for, leading to very loose bounds on the performance of .
However, if the unital part of 0 is fully reconstructed, amuchmore accurate estimate can bemade by inversion
[18]. For any operation  that is reconstructed via RBT, the errors can be accounted for by computing the right

and left corrected operations   ¢ = ¢ ¢ - ( )R 0
1 and   ¢ = ¢ ¢- ( ) ,L 0

1 respectively. The placement of the error
operation on the left or right side of  is arbitrary (usually chosen by convention), so either estimate is valid.

A dif�culty in experimentally obtaining pj arises from the fact that formost aj, the resulting decay Apj
n will

rapidly vanish even for small n. In fact, if  is close to an ideal Clifford operation, then the pjʼs in the overlap
experiments will be close to 1

3
or 0, exceptwhen  » .j For example, when n= 4 one needs better than 1%

precision in themeasured average �delity to distinguish ( )1

3

4
from themean value ofB reliably. Onemitigation

is to exhaustively sample all random sequences up to a given length. This removes con�guration sampling
uncertainty from the estimators of Fj n, above, thoughwe are still affected by imperfections in the randomizing
operations. As already discussed, these imperfections can be accounted for so long as they fall within the
assumptions of the RBprotocol. The cost of additional experiments from exhaustive samplingmay be partially
offset by using control hardwarewithminimal overhead for uploading gate sequences.

3. Experimental implementation

We test the RBTprotocol on a single qubit of a three-transmon, �ve-resonator device, described in [29]. The
probed qubit’s coherence times are m»T 5.7 s1 and m»T 8.4 s,2

echo with anharmonicity a p = -2 221 MHz.

Figure 1. Sequence reduction of anRBToverlap experiment. (a)The ‘unit cell’,  ,r j, which is applied iteratively in anRBprotocol, (b).
whenwritten out (c), one can identify sectionswith up to three Clifford operations, e.g.   † † ,j r r1 2 which can be compiled into a single
gate,  ¢,r1

also from theClifford group. The resulting sequence, (d), has the same form as a standard IRB experiment, except that we
allow  » ,j in which case the action of the complete sequencemay not be close to .

3

New J. Phys. 17 (2015) 113019 BR Johnson et al



The qubit’s readout resonator is coupled to a lumped Josephson parametric ampli�er [30] and pumped 17MHz
detuned from themeasurement signal to operate it in a phase-preservingmode. The readout assignment �delity
of»95% is suf�ciently high that it is advantageous to convert themeasurement outcomes into binary values by
thresholding before averaging [31]. These two choices serve to improve the system stability by reducing
sensitivity to the relative phases of the pump andmeasurement signals, as well as to small voltage �uctuations in
the receiver chain.

Qubit control is realized by single sidebandmodulation of amicrowave carrier detuned∼150MHz from the
qubit transition frequency. The shapedmodulation signals are generated by a custom arbitrary waveform
generator described in section 3.2.With the exception ofZ rotationswhich are donewith a simple frame-update,
we use a�xed-duration pulse of 33.3 ns for all single-qubit gates, and vary the control amplitudes to implement
different rotations.

3.1. Atomic Clifford group operations
Quantumcontrol in superconducting qubits is usually relaxation limited and so tominimize gate errors it is
desirable to keep the gates as short as possible. Typical implementations consider only control about axes in the
XY plane or treatZ rotations separately and are forced to decompose rotations about an arbitrary axis into a
sequence of rotations—the so-called Euler angle decomposition [32]. A relevant example of gates that require
off-axis rotations are single-qubit Clifford group operations. These can be described as rotations about
symmetry axes of the cube in the Bloch sphere, and the cube has symmetries forπ rotations about the ( )1, 0, 1
axis and p2 3 rotations about the ( )1, 1, 1 axis.When implementedwith onlyXY control these can take up to
three times longer to implement. Herewe show that arbitrary single-qubit gates are possible with a single pulse
using conventional control schemes undermild assumptions about the linearity of the control.We term these
atomic operations.

In the reference frame rotating at themicrowave control frequency, the controlHamiltonian rotates the
qubit about a �xed axis in theXY-plane. If the qubit is detuned from themicrowave drive, then the total
Hamiltonian picks up an additionalZ component and the effective rotation axis is the vector sumof the drive
and detuning terms, giving an arbitrary effective rotation axis. This off-resonance component can be induced by
changing the frequency of the qubit or of themicrowave drive. Variable frequency qubits struggle to obtain�ne-
frequency control and introduce non-Markovian effects from the �ux bias line. On the other hand, rapidly
changing the frequency of amicrowave source in a phase coherentmanner is a technical challenge.However,
experiments already typically provide arbitrary amplitude and phasemicrowave control with an IQmixer. This
allows us to implement a discrete-time version of a frequency change by linearly ramping the phase of the shaped
microwave drive [33].

The effect of phase ramping on detuning is straightforward to derive from a Suzuki–Trotter expansion [34]
of a tilted rotation angle gate. Consider aHadamard rotation (π rotation about theX+ Z, or ( )1, 0, 1 axis). The
unitary is given by

= - +p ( )( )U e . 5X Z
Had

i 2
1
2
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wherewe have injected, in round parenthesis, identityZ rotation blocks. The same approach carries through
for shaped pulses with time varying amplitudes. The phase steps dynamically varywith the pulse amplitude to
maintain the same effective rotation axis.

Truncating the product in equation (7) at�nite n, corresponding to the number of samples in the control
pulse, gives a discrete-time implementation of a frequency shift in terms ofXY control (theX components) and
per-sample frame updates (theZ components). This is, however, only an approximation (top of�gure 2). The
introduced error is drastically reduced by using a symmetric second-order Suzuki–Trotter expansion
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This is equivalent to de�ning the phase of each step at themid-point of the time bin, rather than at the start of the
ramp. This second-order version reduces the error to a level which is insigni�cant compared to other error
sources in current implementations.

In implementing a detuned pulsewemove to a new virtual framewherewe acquire phase at a different rate
than the qubit’s frame. Thus, whenwemove back to the qubit framewemust account for the accumulated phase
difference. This is represented by the �nalZ rotation outside the product in equation (7). Sincewe are already
working in a rotating frame, thisZ rotationmay be implemented for free by updating the phase of all subsequent
pulses.

When controlling the anharmonic oscillators common to superconducting qubit implementations,
additional pulse shaping is necessary to avoid exciting higher energy levels [35]. The�rst-orderZ-only
correction follows through naturally to these phase ramped pulses and their ability to demonstrate high �delity
in aDuf�ng oscillatormodel of a transmon is shown in the bottompanel of�gure 2.

Figure 2. Simulated average gate �delity [28] for the implementation of aHadamard gatewith aGaussian pulse shape extending to
s2 and varying time steps (colors). (Top)Example baseband quadrature control signals for a 30 ns durationHadamard sampled at

1 GS s−1. Blue and green show the I andQquadratures, respectively. The pulse carries forward a frame change of »-2.335 rad.
(Middle) Simulates a qubitmodel, where the only source of error is discretization error from implementing the frequency shift using
phase-ramps. Dashed (solid) lines indicate 1st order 2nd order Suzuki–Trotter approximation. (Bottom) Simulates a�ve-level
Duf�ng oscillatormodel of a transmonwith 200 MHz anharmonicity. Dashed lines indicate noDRAGcorrectionwhereas solid have
Z-onlyDRAGcorrection. Interplay between theDRAGcorrection, phase ramping and discretization effects gives non-smooth
behavior.
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3.2. Custom control hardware
Exhaustive sampling of even fairly short RBT overlap experiments (in our case, up to three twirling gates)
requires implementing thousands of sequences of gates. This poses a practical dif�culty for conventional
arbitrary waveform generators (AWGs)which require waveforms that are the full duration of each sequence.
These AWGs do not take advantage of the relatively small number of primitives that compose RB sequences, i.e.,
the pulses corresponding to eachClifford operation. Consequently, simply uploadingwaveformdata to a
traditional AWGmay consumemorewall clock time than running the experimentmany thousands of times to
collect statistics.

To overcome this hurdle, we use a custom arbitrary waveform generator called the arbitrary pulse sequencer
(APS). This hardware is programmed using a natural representation for quantum information processing
experiments: it uses lists of waveformprimitives (pulses as short as eight samples) and outputs the composite
waveformproduced by concatenating these primitives without pauses or gaps between successive waveforms
This allows the user to upload only a small set of waveforms, such as a generating set of the Clifford group (e.g. ,
X,Y,Z, Xi , Yi , Zi ), or the ‘atomic’ pulses described above, and re-use these same pulses regardless of the
sequence length. This design also has the advantage of dramatically reducing thewaveformmemory
requirements for theAPS. In addition, our hardware has the capability to receive new sequence data while
simultaneously outputtingwaveformsWeuse dual-port RAMcon�gured as a circular buffer to�ll new
sequence data behind the sequence read pointer. Consequently, data acquisition can beginwith only a small
subset of the total sequence loaded onto the APS.

Fast and robust data taking is particularly important to tomography in order to avoid unaccounted for drifts
in control or sample parameters, such as�uctuations in the qubit relaxation time. The two improvements
described above combine to signi�cantly reduce the overhead of experiments with large numbers of sequences
and to reduce sensitivity to drift. For example, using the APS allowed collecting anRBTdata set in∼6 h.We
estimate that with a conventional AWG, the same experiment would takemore than twice as long.

4. Results

4.1. Parameter estimation methods
The linear span of single-qubit Clifford group operations is ten-dimensional, and includes all trace-preserving,
unital operations. Consequently, an RBT reconstruction requires at least ten distinct decay experiments, where
each observed decay rate pj is related to the trace overlap aj by equation (4)8. Analytical formulas relating the
observed�delities of each sequence length to the decay rate exist [18], but for the size of the statistical ensemble
available to us and the experiment signal-to-noise ratio, this procedure results in large error bars.We remedied
this by observing that the �t parameters are not independent across all experiments. In particular, the scalingA
and offsetB for the decay curves (see equation (3)) should be the same across different experiments as long as the
characteristics of the state preparation andmeasurement are stable.

The overlaps with ‘instantaneous decay’ (pj= 0) suffer from �tting degeneracy between pj= 0 and poor
preparation andmeasurement (A= 0). To break the degeneracy, we simultaneously �t a reference slow decay
rate ( »p 1j )with each overlap and require theA andB values to be consistent. An appropriate reference comes

froma standardRB experiment that estimates the �delity of the null operation  ,0 which usually has high �delity
to the identity and therefore leads to a slow decay.

Thus, each decay rate pj is found using a four parameter �t of both Fj n, and another reference decay, where
the parameters are: the reference decay rate (unused in the reconstruction), the decay rate pj, a shared scale
parameterA, and a shared offset parameterB, as in equation (3).Moreover, because fast decays only lead to a
small number of reliable observations, while slow decays lead tomany, the �gure ofmerit used in the joint �ts is
the sumof themean squared errors of each of the two decays.

The sequence lengths used to estimate each overlapwere 1, 2, 3 and¥,where the average �delities of in�nite
length sequences were approximated by averaging the single-pulse sequences consisting of the 12 elements of A4

for the same�xed initial state, which effectively implements a twirl of the initial state9. This results in a total of
+ + + =12 12 12 12 1, 8962 3 different sequences (length 1 and¥ sequences were repeated 12 times for a

total of 2, 160 experiments). The resulting decay curves for our implementation of theHadamard are given in
�gure 3. SinceHadamard is not in A ,4 every <p 1,j and there is no slow decay. In fact, the decay rates » p .j

1

3

8
In principle we could reduce this to nine distinct decays, since unital trace-preserving single-qubit operations have only nine free

parameters, butwe choose not to enforce this additional constraint here.
9
Twirling a gate over a two-design yields a depolarizing channel (up to gate imperfections), so an in�nite sequence of such depolarized

channels wouldmap all inputs to themaximallymixed state.We replace the in�nite sequence by a short state twirling sequence that does the
same thing.We are still able to capture themeasurement imperfections because the state and gate twirling operations are the same.
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The curves with <p 0j are particularly unusual compared to standard RB experiments due to the oscillatory

behavior of the sequence �delity with length n, which occurs for vanishing overlaps »a 0.j

For eachRB, IRB, or RBT sequencewe collect 10 000 repetitions, binned into groups of 100. This binning
reveals the underlying distribution of the experimental noise, and allows one to resample the data to create
bootstrapped con�dence intervals. The choice of 100 shots per bin is a trade-off between information about the
distribution versus data storage requirements and experiment runtime.

In the analysis here, the�ts to the exponential decays were performed by a nonlinear least-squares (NLLS)
minimization, using Broyden–Fletcher–Goldfarb-Shanno (BFGS)minimization of the joint �gure ofmerit with
a starting point obtained from a simple Prony estimate of slow decays [36, 37]. Con�dence intervals were
estimated by non-parametric bootstrap percentiles [38], using 2000 replications obtained from100 samples of
each of the exhaustive experimental con�gurations.

4.2. Reconstruction andfidelities
In order to test the protocol, we apply RBT to an implementation of the identity (a zero-length null operation), a
Hadamard gate, and theW gate (a p

6
rotation about the ( )1, 1, 1 axis, which is a unitary operation outside the

Clifford group). For each tested gate, the �ts of the overlap experiments are combined into an overlap vector
= ¼

 { }a a a, , .k1 As described in appendix, the reconstructed operations  ¢ are obtained from least squares
inversion. The operations, alongwith their ideal, noiseless counterparts are depicted in the Pauli–Liouville
representation in �gure 4. In this purely real representation the unital part excludesmost elements of the �rst
row and column. Strictly speaking it also requires the top-left element to be equal to one for a trace preserving
map, althoughwe have not enforced this constraint in our reconstruction.

We compare RBT reconstructions to standard RB, IRB andQPT. The average �delities from these
approaches for each of the three operations considered are depicted in�gure 5. TheQPT results are adjusted to
account for the imperfections in themeasurement, under the assumption that these imperfections are
independent of themeasurement basis (i.e., the data are re-scaled so that theZmeasurement spans the range
-[ ]1, 1 ).We also compared theRBT reconstruction to a separate IRB estimate of the�delity of theHadamard
gate, and to a direct estimate of the �delity of theW gate based on a subset of the decays. AlthoughW is outside
theClifford group, it can be decomposed into a linear combination of Clifford operations. Namely

   =
+

+ +
- ( )1 3

3

1

3

1 3

3
. 91 5 6

Consequently, one can estimate the �delity to Ŵ fromoverlap experiments with just ˆ ˆC C, ,1 5 and Ĉ6 [18].
However, the resulting estimate has the same bounds as the standard IRB protocol, which leads to signi�cantly
greater uncertainty in the estimate compared toQPTor RBT. For reference, with our gate durations and sample
coherence times, we estimate that coherence-limited control should lead to an average gate�delity of 0.9974.

Figure 3.Experimental decay curves fromRBToverlap experiments of aHadamard gate, vertically offset by 0.03 for clarity. ‘In�nite’
length sequences were approximated by averaging outcomes from applying single pulses from A .4 The curves decay rapidly with a

rate ~∣ ∣p
1

3
,j and thus the�tting procedure requiresmore care than standard RB �tting procedures, since only a few points are

statistically signi�cant.
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Figure 4.Hinton diagrams [39] for the Liouville representations of the ideal operation  (left) and reconstructed unital part of the

operation  ¢ (right) for the identity operation,Hadamard operation, and =
p- + +

Ŵ e .
X Y Zi

12 3 The area of each square corresponds to
themagnitude of the correspondingmatrix element, with the sign represented bywhite (positive) or black (negative). The hatched
areas correspond to parameters not accessible via the RBTprotocol.

Figure 5. Fidelity estimates for the various reconstructions of the identity, Hadamard, andW gates. The gray bar shows the average
�delity estimate from standardRB for the full single-qubit Clifford group. Error bars indicate 95% con�dence intervals for each
estimate, except for the IRB points wherewe show the bounds of the IRB inversion procedure. These bounds are dramatically larger
than the uncertainties in the other protocols, extending past the bottomof the�gure to roughly 0.985. After removing randomizing
error, the RBT �delity estimate for theHadamard gate is consistent with standard RB. The lower�delity ofW is potentially due to the
gate not being directly calibrated. Coherence-limited control is estimated to produce gate �delities of 0.9974.
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Clearly the IRB bounds (black bars) aremuch looser than the �delity estimates using the full reconstruction,
although all�delity estimates lie within the IRB bounds, so they are at least consistent. The error bars for the
�delities of theQPT andRBT reconstructions are comparable, and their estimates lie within each other’s error
bars (diamond and circle). Importantly, theseQPT estimates are non-physical, while the RBT estimates do not
suffer from the same problem.However, neither of these estimates are comparable to the �delity estimate for the
identity obtained byRB (gray bar), indicating that the additional error is due to the residual imperfections in the
randomizing operations, and not just the error in the gate in question.

To fully take advantage of RBT,we use the inverse of the reconstructed null operation  ¢0 to remove the error
of the randomizing operations from the other reconstructions. As noted earlier in section 2, there is freedom to
remove this error channel by composing the inverse null operation on the left or right side of the characterized
operation, and bothmay be valid. Consequently, we show both possibilities in the �delity and negativity
estimates.With this error removed, the RBT �delity estimates (red and green triangles) aremuch closer to the RB
�delity estimate for the identity. In other words, RBT is able to account for the errors in the randomizing
operationswithout the imprecision that the IRB bounds yield.

4.3. Systematic errors
Imprecise knowledge aboutmeasurement and preparation imperfections is a signi�cant problem inQPT,
because it leads to strong systematic errors in the reconstructions of the quantumprocess [17].While some new
techniques aim at performing full reconstruction of all experimental components in a self-consistentmanner
[17, 19, 20, 40], techniques such as RB, RBT, and others aim at getting around this problemby designing
experiments that are insensitive to this ignorance [8, 9, 11, 18, 41].

In order to demonstrate the reduced systematic errors in RBT compared toQPT,we tested the reconstructed
process for characteristics such as negative eigenvalues—which, loosely speaking, correspond to negative
probabilities, and are therefore non-physical. This technique has been used elsewhere to test for systematic
errors in the analysis of tomographic data for quantum states [42], but it applies equally well in the quantum
process setting, thanks to theChoi–Jamiolkoski isomorphism [43, 44]. This isomorphismmakes a one-to-one
correspondence between a linear quantumprocess  and the states ( )J resulting fromapplying  to half of a
�xedmaximally entangled state.  is considered to be physical if and only if itmaps physical states to physical
states evenwhen acting on only part of a state—a condition known as complete positivity (CP) [43, 44]. This
condition is equivalent to requiring that ( )J be positive (i.e., that it has only positive eigenvalues).While RBT is
only able to reconstruct the unital part of , positivity of a single qubit operation is equivalent to positivity of the
unital part of that same operation [18], and so these tests can be applied to the reconstructed unital operation  ¢.

Following [42], we test  ¢ for non-physicality by adaptively estimating themost-negative component of the
process and cross-validating it. For each con�guration of both RBT andQPT experiments, we divide the
measurements into two halves. The�rst half is used to reconstruct the unital part of the operation, whichwe
denote  ¢.1 Wecompute the eigenvector of  ¢( )J 1 corresponding to itsmost negative eigenvalue—this is whatwe
call the negativity witness. The second half is used to obtain an independent estimate of the operation, whichwe
call  ¢ ,2 to estimate the expectation value of the negativity witness under  ¢( )J .2 Since the parameters of  ¢i are
estimated byNLLS instead of projectivemeasurements on  ¢( )J ,i we cannot easily use theHoeffding bounds in
[42]. Instead, we compute con�dence regions using non-parametric bootstrap percentiles, re-sampling only the
second half of the samples while holding the negativity witness �xed.

As�gure 6 illustrates, theQPT reconstructions have strongly negative eigenvalues evenwhen statistical
�uctuations are taken into account—the 95% con�dence intervals are well below zero.With the exception of the
identity, all RBT reconstructions are consistent with CPoperations—evenwhen the non-physical estimates of
the identity are used to separate the error of the randomizing operations from the errors in the gate itself.

The likely culprit for the observed negativity of the RBT estimates is bias in theNLLS estimation of the decay
constants. In order to test this, we ran numerical experiments with depolarizing noise leading to�delities of
similarmagnitude towhatwe observed in the experiment, as well as single-shotmeasurements with probability
of error comparable to our experiments. Running our estimation procedure on this arti�cial data, we also found
negativity for the identity reconstruction, with similar negativity to the experiment.

It is possible to obtain physical QPT estimates fromunconstrained linear inversion by not compensating for
measurement imperfections. This leads to reconstructions without anymeasurable negativity, at the cost of
�delity estimates that are in the neighborhood of 95%.However, this is completely inconsistent with�delity
estimates fromRB, so they remain implausible. In otherwords, QPT estimates that are consistent with RB have
statistically signi�cant unphysical properties. By the same token, QPT estimates that are physical are
inconsistent with�delities obtained fromRB. RBT estimates, on the other hand, are consistent with physical
evolution as well as our best estimates of�delity for the same gates.
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5. Summary

Wehave empirically demonstrated the feasibility of RBT reconstructions of arbitrary single-qubit unitaries.
These reconstructions show signi�cant advantages over standard tomographic reconstruction of quantum
operations. Namely, �delity estimates of the RBT reconstruction are consistent with�delity estimates obtained
through robustmethods, while the reconstructed operation is statistically consistent with a physical operation
even though such a constraint was not imposed in our reconstruction.We also demonstrated that standard
tomographical reconstructions do not satisfy these requirements simultaneously without signi�cant
modi�cations (e.g., using gate-set tomography). However, RBT imposes large costs in terms of experimental
runtime and additional analysis complexity. Extending this work to two-qubit process tomographywould
require either daunting experiment counts for exhaustive sampling, accepting sampling variance in the decay
curves, or amodi�ed protocol that yields slow decays that aremore ammenable to�tting procedures.
Ultimately, however, it remains unclear how to use information obtained from any of the known tomographical
protocols for�ne-grained debugging of quantumdevices. Continuedwork is necessary to�nd other robust
protocols that answer targeted questions about quantumoperations, such as the recent work on robust phase
estimation for pulse calibration [41].
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Appendix. Least-squares reconstruction of the unital part  ¢

For any given trace preserving quantumoperation , the unital part  ¢ is linearly related to

a , as described in the

main body of the paper, by the equation

 = ( )†a tr . A1j j

Since theClifford group operations j are unital and trace preserving, without loss of generality, this expression
can be replaced by

 = ¢ ( )†a tr . A2j j

Figure 6.Expectation value of the negativity witness for reconstructed operations using RBT andQPT. The error bars correspond to
95%bootstrapped con�dence intervals using 2000 replications of the 50 samples for each experimental con�guration used in
estimating the expectation value of the negativity witness.
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The explicit reconstruction of  ¢ from

a can be obtained by noting that (A2) implies

= ¢ · ( ) ( )a P vec A3

where  ¢( )vec is the vectorization of  ¢ andP is the predictormatrix de�ned as
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

*

*=

Ä

Ä



( )
( )

ˆ ˆ

ˆ ˆ ( )

†

†P

C C

C C

vec

vec
. A4

1 1

2 2

With these de�nitions, we have  ¢ = 
P a ,I where P I is theMoore–Penrose pseudo-inverse ofP (strict inversion

is not possible as P is rank de�cient, thanks toClifford operations spanning only a ten-dimensions space, instead
of the 12-dimension space of general trace preserving operations, or the 16-dimensional space of general
operations). In the presence of homoscedastic statistical �uctuations, the use ofP I corresponds to a least-squares
estimatewithminimumEuclidean norm, although solving (A3) through other equivalentmeans is preferable to
pseudo-inversion, for reasons of numerical stability (the backslash operator inMATLAB and Julia [45], as well as
specialized functions in other software packages, provide this functionality).
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